Computation of Fresnel Integrals

By J. Boersma

Two approximations, one valid for x less than 4 and the other valid for x larger than 4 , have been established by means of the τ-method of Lanczos [1] for the Fresnel integrals defined in the form

$$
f(x)=\int_{0}^{x} \frac{e^{-i t}}{\sqrt{2 \pi t}} d t=C(x)-i S(x)
$$

These approximations are the following:
(1) For $0 \leqq x \leqq 4 \quad f(x)=e^{-i x} \sqrt{\frac{x}{4}} \sum_{n=0}^{11}\left(a_{n}+i b_{n}\right)\left(\frac{x}{4}\right)^{n}$
(2) For $x \geqq 4$

$$
f(x)=\frac{1-i}{2}+e^{-i x} \sqrt{\frac{4}{x}} \sum_{n=0}^{11}\left(c_{n}+i d_{n}\right)\left(\frac{4}{x}\right)^{n} .
$$

The numerical values of the coefficients a_{n}, b_{n}, c_{n} and d_{n} are given by

$a_{0}=+1.595769140$	$b_{0}=-0.000000033$	$c_{0}=0$	$d_{0}=+0.199471140$
$a_{1}=-0.000001702$	$b_{1}=+4.255387524$	$c_{1}=-0.024933975$	$d_{1}=+0.000000023$
$a_{2}=-6.808568854$	$b_{2}=-0.000092810$	$c_{2}=+0.000003936$	$d_{2}=-0.009351341$
$a_{3}=-0.000576361$	$b_{3}=-7.780020400$	$c_{3}=+0.005770956$	$d_{3}=+0.000023006$
$a_{4}=+6.920691902$	$b_{4}=-0.009520895$	$c_{4}=+0.000689892$	$d_{4}=+0.004851466$
$a_{5}=-0.016898657$	$b_{5}=+5.075161298$	$c_{5}=-0.009497136$	$d_{5}=+0.001903218$
$a_{6}=-3.050485660$	$b_{6}=-0.138341947$	$c_{6}=+0.011948809$	$d_{6}=-0.017122914$
$a_{7}=-0.075752419$	$b_{7}=-1.363729124$	$c_{7}=-0.006748873$	$d_{7}=+0.029064067$
$a_{8}=+0.850663781$	$b_{8}=-0.403349276$	$c_{8}=+0.000246420$	$d_{8}=-0.027928955$
$a_{9}=-0.025639041$	$b_{9}=+0.702222016$	$c_{9}=+0.002102967$	$d_{9}=+0.016497308$
$a_{10}=-0.150230960$	$b_{10}=-0.216195929$	$c_{10}=-0.001217930$	$d_{10}=-0.005598515$
$a_{11}=+0.034404779$	$b_{11}=+0.019547031$	$c_{11}=+0.000233939$	$d_{11}=+0.000838386$

The derivation of these approximations is given in [2].
The maximum error is 1.6×10^{-9} for the first approximation and 0.5×10^{-9} for the second approximation.

Mathematical Institute
University of Groningen
The Netherlands

1. C. Lanczos, Applied Analysis, Prentice Hall, Englewood Cliffs, N. J., 1956.
2. J. Boersma, "On a numerical method for the computation of Fresnel integrals", Report TW 2, Math. Inst., Univ. of Groningen, 1960.

Received March 2, 1960.

